If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+20k+17=0
a = 4; b = 20; c = +17;
Δ = b2-4ac
Δ = 202-4·4·17
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{2}}{2*4}=\frac{-20-8\sqrt{2}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{2}}{2*4}=\frac{-20+8\sqrt{2}}{8} $
| 4h+2=-5+3h | | -5-10j=10j-2j+9 | | -19-16y=10y+20 | | 3n=6n+6 | | -8w=5-9w | | 3-k=3-10k | | -5-5u-10u=8u-5 | | 2y^2+4y−6=0 | | 2y2+4y−6=0 | | 3c-8=6c+7 | | 4(2-v)=8 | | 1/2h-15=2h | | -9h=10h-4 | | 8−3x=14−4x8-3x=14-4x8−3x=14−4x | | 8a=3(4+2a) | | 9(5a+9)=42a | | x-(x*0.08)=88440 | | ⅓x-12x=-24 | | 84.911(x)+(86.909)(1-x)=86.231 | | -2b=-9+7b | | -3z=4-4z | | 2n2+7n+5=0 | | -8+6s=4s | | x²=2x-2 | | 6x+17+13x-25+x=180 | | 3e+4=5e−10 | | 6x6=3x6 | | 2+9-x=2.5 | | x+0.1x=228 | | 9)2/3x+7=15 | | x+3+x=30 | | x-(x*0.08)=108440 |